Iridoids from Crescentia alata[§]

María Guadalupe Valladares and María Yolanda Rios*

Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa 62209, Cuernavaca, Morelos, México

Received October 12, 2006

Four new 11-nor-iridoids, 6β , 7β , 8α ,10-tetrahydroxy-*cis*-2-oxabicyclo[4.3.0]nonan-3-one (1), 6β , 7β , 8α ,10-tetra-*p*-hydroxybenzoyl-*cis*-2-oxabicyclo[4.3.0]nonan-3-one (2), 1β , 6β , 7α , 8α ,10-pentahydroxy-*cis*-2-oxabicyclo[4.3.0]nonane (3), and 6β -hydroxy-2-oxabicyclo[4.3.0] Δ^{8-9} -nonen-1-one (4), were isolated from the pulp of the fruits of *Crescentia alata*. Although a limited number of *Crescentia* species have been studied chemically, iridoids lacking C-11 have been isolated from the fruits of these species, and the isolation of compounds 1-4 from *C. alata* is in accordance with the constituents of the species previously analyzed. The structures of these compounds were established on the basis of IR, UV, ¹H and ¹³C NMR, DEPT, COSY, HSQC, HMBC, MS, and X-ray data.

Crescentia alata Kunth (Bignoniaceae) [common names: cuatecomatl, kuhteconatl (náhuatl), cuastecomate, and cirian] is a tree growing in mild and hot, dry arid zones of Mexico. The black mature pulp of the fruits from this plant has been employed since the eighteenth century to prepare a tonic used to relieve different respiratory infections, cough, asthma, bronchitis, tuberculosis, and breast pain.¹ A previous report to validate the use of *C. alata* in the traditional medicine of Guatemala as an anti-inflammatory remedy showed that a methanol extract of the leaves from this plant exerted significant activity *in vivo* and that this extract contained rutin, kaempferol, and kaempferol 3-*O*-rutinoside.² There have been no previous literature reports on the chemical composition of the fruits of this species.

C. alata is a 10 to 14 m tree with spherical fruits of approximately 15 cm diameter. The mature fruits included a black pulp, and the methanol extract yielded compounds 1-4, triacylglycerides, 3β -sitosterol palmitate,³ stigmast-4-en-3-one,⁴ stigmast-4,22-dien-3-one,⁵ ningpogenine,⁶ sucrose, and glycerol. The structure elucidation of compounds 1-4 is described herein.

Compound 1 was isolated as white needles and had, on the basis of HRCIMS [$(M + H)^+$, m/z 219.0865], a molecular formula of C₉H₁₄O₆, indicating three unsaturation degrees. One of these was due to the presence of a carbonyl group (1713 cm⁻¹ in the IR and

 $\delta_{\rm C}$ 176.3 in ¹³C NMR spectrum). A bicyclic nor-iridoid skeleton was evidenced from the nine carbon resonances in the ¹³C NMR and DEPT spectra of 1, corresponding to three CH₂, four CH, and two quaternary carbons. Of these, in addition to the carbonyl group (vide supra), five signals were assigned to oxygenated carbons at δ 82.6 (C), 79.9 (CH), 79.4 (CH), 68.2 (CH₂), and 66.2 (CH₂), and three signals at δ 41.2 (CH), 41.0 (CH), and 33.8 (CH₂) were due to sp³ carbons. In accordance with the COSY spectrum, three gem correlations were observed: the signal at $\delta_{\rm H}$ 4.48 showed a crosspeak with the signal at $\delta_{\rm H}$ 4.33 (H-1), the signal at $\delta_{\rm H}$ 3.73 with those at $\delta_{\rm H}$ 3.63 (H-10), and the signal at $\delta_{\rm H}$ 2.73 with those at $\delta_{\rm H}$ 2.58 (H-4). On the basis of the HMBC and HSQC spectra, the signals at $\delta_{\rm H}$ 4.48 and 4.33 ($\delta_{\rm C}$ 68.2, H-1) showed cross-peaks with the signals at $\delta_{\rm C}$ 176.3 (C-3), 41.0 (C-5), 82.6 (C-8), and 41.2 (C-9), establishing that C-3 corresponded to the carbonyl group and that C-8 was an oxygenated quaternary carbon; the signals at $\delta_{\rm H}$ 2.73 and 2.58 ($\delta_{\rm C}$ 33.8, H-4) showed cross-peaks with C-3, C-5, C-9, and the signal at $\delta_{\rm C}$ 79.4 (C-6), establishing that C-6 was an oxygenated tertiary carbon; the signal at $\delta_{\rm H}$ 3.76 ($\delta_{\rm C}$ 79.9) showed cross-peaks with C-5, C-8, and C-9, establishing that it corresponds to C-7 and identifies this as an oxygenated tertiary carbon; finally, the signals at $\delta_{\rm H}$ 3.73 and 3.63 ($\delta_{\rm C}$ 66.2, H-10) showed cross-peaks with C-7, C-8, and C-9. As a consequence, the four hydroxyl groups deduced from the molecular formula were located at C-6, C-7, C-8, and C-10, and this compound corresponded to 6,7,8,10-tetrahydroxy-2-oxabicyclo[4.3.0]nonan-3-one. The structure 1 was confirmed by X-ray diffraction measurements (Figure 1), showing a cis A/B ring junction and a syn orientation among H-5, OH-6, OH-7, CH₂-10, and H-9. In accordance with the biosynthetic origin of the iridoids,⁷ the *cis* A/B ring junction is β , and **1** corresponds to 6β , 7β , 8α , 10-tetrahydroxy-*cis*-2-oxabicyclo[4.3.0]nonan-3-one. On the basis of X-ray diffraction measurements and the ¹H NMR analysis, a value of $J_{\rm H5-H9} = 8.8$ Hz corresponds to the β cis relationship between these hydrogens, a value of $J_{\rm H5-H6} = 8.0$ Hz justified its *anti* relationship, and a value of $J_{\rm H6-H7} = 3.6$ Hz justified a H₆-H₇ syn relationship.

The presence of aromatic rings in compound **2** was evident from the absorptions at 1606 and 1464 cm⁻¹ in the IR spectrum and the absorption maximum at 251 nm in the UV spectrum. The presence of four *para*-substituted benzoyl residues was deduced from the observation of four signals for carbonyl groups at $\delta_{\rm C}$ 165.0, 164.9, 164.4, and 164.0; eight singlet signals at $\delta_{\rm C}$ 129.6, 129.4, 129.1,

[§] This paper is derived in part from the Ph.D. thesis of María Guadalupe Valladares.

 $[\]ast$ Corresponding author. Tel and Fax: +52 (777) 329 79 97. E-mail: myolanda@uaem.mx.

Figure 1. ORTEP view of 6β , 7β , 8α , 10-tetrahydroxy-*cis*-2-oxabicyclo[4.3.0]nonan-3-one (1).

129.0, 128.0, 127.8, 127.7, and 127.6; and four AB systems at $\delta_{\rm H}$ 7.95 d (8.4 Hz, $\delta_{\rm C}$ 131.25), 7.77 d (8.8 Hz, $\delta_{\rm C}$ 131.22), 7.73 d (8.4 Hz, $\delta_{\rm C}$ 131.5), 7.66 d (8.4 Hz, $\delta_{\rm C}$ 132.4), 7.61 d (8.4 Hz, $\delta_{\rm C}$ 131.0), 7.54 d (8.4 Hz, $\delta_{\rm C}$ 132.2), 7.53 d (8.8 Hz, $\delta_{\rm C}$ 132.1), and 7.46 d (8.4 Hz, $\delta_{\rm C}$ 132.1) in the ¹H, ¹³C NMR and HSQC spectra. The bicyclic nor-iridoid nature of 2 was deduced from analysis of the nine additional signals in the ¹³C NMR spectrum and from their corresponding signals in the ¹H NMR spectrum. The downfield shift observed for H-6 ($\Delta\delta$ 5.50–4.06 = 1.44), H-7 ($\Delta\delta$ 6.40 – 3.76 = 2.64), H-10a ($\Delta\delta$ 5.36 - 3.73 = 1.63), H-10b ($\Delta\delta$ 5.10 -3.63 = 1.47), and C-8 ($\Delta \delta$ 88.1 - 82.6 = 5.5) with respect to 1 established that the four para-substituted benzoyl residues were located on the oxygens at C-6 to C-10 and that this natural product corresponded to the tetra-*p*-hydroxybenzoyl derivative of **1**. On the basis of ¹H NMR analysis, the β cis A/B ring junction was established in accordance with a value of J = 11.6 Hz for H₅-H₉, an *anti* relationship between H_5-H_6 was deduced from the value of $J_{\rm H5-H6} = 7.2$ Hz, and a syn relationship between H₆-H₇ was established from $J_{\rm H6-H7} = 4.4$ Hz. Thus, this natural product corresponds to 6β , 7β , 8α , 10-tetra-*p*-hydroxybenzoyl-*cis*-2-oxabicyclo-[4.3.0]nonan-3-one (2). Compound 2 gave the HRFABMS peak at m/z 458.1262, corresponding to $[M - 2C_7H_4O_2]^+$, which justified the molecular formula C₃₇H₃₀O₁₄ and 23 unsaturation degrees.

Compound 3 was isolated as a white, amorphous powder with a positive ion HRCIMS $(M + H)^+$ at m/z 221.0616 (C₉H₁₆O₆) and two unsaturation degrees, in accordance with a bicyclic nor-iridoid skeleton. Nine carbon resonances were observed from the ¹³C NMR and DEPT spectra: three CH₂, five CH, and one quaternary carbon. Of these, six signals were assigned to oxygenated carbons (one of a hemiacetal function), and three signals were due to sp^3 carbons. These data were in agreement with a dihydroisomer of 1. The hemiacetal function was at C-1 on the basis of the HMBC and HSQC spectra. Compound **3** had a β cis A/B ring junction in accordance with a J = 10.0 Hz for H₅-H₉, an *anti* relationship between H_5-H_6 (J = 10.0 Hz), and an *anti* relationship between H_6-H_7 (J = 10.0 Hz); a value of $J_{H9-H1} = 5.2$ Hz justified an *anti* relationship between those hydrogens⁸ and the β orientation of OH-1. As a consequence, compound **3** corresponds to 1β , 6β , 7α , 8α , 10pentahydroxy-cis-2-oxabicyclo[4.3.0]nonane.

Compound 4 was a bicyclic nor-iridoid isolated as a yellow oil, which showed a positive ion in HREIMS $[(M)^+]$ at m/z 168.0739 $(C_9H_{12}O_3)$ and four unsaturation degrees. Two of these were due to the bicyclic skeleton, and two were due to a tetrasubstituted α,β unsaturated carbonyl ester. The α,β -unsaturated carbonyl ester was located at C-1, C-9, and C-8 in accordance with cross-peaks between δ_H 2.65 and 2.54 (δ_C 46.9, H-7) and δ_H 2.20 (δ_C 17.0, H-10) and signals at δ_C 157.0 (C-8) and 122.6 (C-9) in the HMBC spectrum. Both hydrogens H-7 and δ_H 2.20 (δ_C 28.3, H-4b) showed crosspeaks with C-6 (δ_C 78.6), while δ_H 4.20 (H-6) showed cross-peaks with C-4 and C-5 ($\delta_{\rm C}$ 50.1), establishing that a hydroxyl group was on C-6. In accordance with a $J_{\rm H5-H6}$ = 7.6 Hz, the OH-6 is β . Compound **4** was thus identified as 6β -hydroxy-2-oxabicyclo-[4.3.0] Δ^{8-9} -nonen-1-one.

Although a limited number of species from the genus *Crescentia* have been studied chemically, iridoids lacking C-11 have been isolated from the fruits of these species,^{9,10} and the isolation of compounds 1-4 from *C. alata* is totally in accordance with the chemical constituents of the species previously analyzed.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a Perkin-Elmer 341 MC polarimeter, and UV spectra were recorded on a Hewlett-Packard 8453 spectrometer using CHCl3 as solvent. IR spectra were obtained in KBr or as films (CHCl₃) on a Bruker Vector 22 IR spectrometer. All NMR spectra were recorded on a Varian Unity 400 spectrometer at 400 MHz for ¹H NMR, ¹H-¹H COSY, HSQC, and HMBC and 100 MHz for ¹³C NMR and ¹³C DEPT, using CDCl₃ or CD₃OD as solvent as indicated. Chemical shifts are reported in ppm (δ) relative to the TMS signal. CIMS, EIMS, HRCIMS, and HREIMS were recorded on a JEOL JMStation-JM 700 mass spectrometer in a matrix of glycerol. X-ray diffraction measurements were obtained on a monocrystal Bruker Smart Apex (low temperature). GC-MS analyses were obtained using a Agilent 6890 GC System/5973 MSD chromatograph equipped with a HP-1 capillary column (length 30 m, i.d. 0.25 mm, 0.25 μ m). The carrier gas was helium, and the linear gas velocity was 36 cm/s. The injector temperature was 250 °C, and the column temperature, initially at 45 °C, was gradually increased at a rate of 10 °C/min to 250 °C. For detection, a flame ionization detector at 280 °C, IE (scan 30-550 u), was used. The identification of each component was based on a comparison of its mass spectrum with those contained in the N-15598 Mass Spectral Library.

Plant Material. The mature fruits of *C. alata* were collected at Sierra de Huahutla, Morelos, México, in March 2003. The botanical specimen (voucher 17197) was identified by Biol. Juan Carlos Juárez Delgado from Centro de Educación AMbiental e Investigación de la Sierra de Huautla (CEAMISH) and deposited at the Herbarium of the Universidad Autónoma del Estado de Morelos (HUMO), Cuernavaca, Morelos, México.

Extraction and Isolation. The air-dried pulp of the mature fruits from C. alata (4 kg) was extracted with MeOH (20 L \times 3) at room temperature. The extraction solvent was concentrated to dryness in vacuo to obtain 210 g of residue. Fractionation of this extract by open column chromatography was performed with a n-hexane-acetone gradient, collecting fractions of 500 mL each. The composition of the fractions was monitored by TLC, and the compounds were visualized using a UV lamp or by spraying with a 1% solution of (NH₄)₄Ce-(SO₄)₄·H₂O in 2 N H₂SO₄. On the basis of TLC, the fractions were pooled into seven groups: F-1 (10.2 g, n-hexane, 100%), F-2 (7.7 g, n-hexane-acetone, 95:5), F-3 (3.9 g, n-hexane-acetone, 9:1), F-4 (4.7 g, n-hexane-acetone, 8:2), F-5 (9.0 g, n-hexane-acetone, 7:3), F-6 (6.6 g, *n*-hexane-acetone, 6:4), and F-7 (2.4 g, *n*-hexane-acetone, 5:5). Each fraction was further separated using column chromatography over silica gel 60 and a gradient of n-hexane-acetone-methanol as eluent. Fraction F-1 yielded a mixture of palmitic, palmitoleic, stearic, oleic, and linolenic acids (4.6 g, 2.19%, GC-MS retention times 18.50, 18.73, 20.21, 20.55, and 20.90 min, respectively); fraction F-2 yielded β -sitosteryl palmitate (236 mg, 0.11%) and an equal proportion mixture of estigmastan-4-en-3-one and estigmastan-4,22-dien-3-one (477 mg, 0.22%); fraction F-3 yielded a mixture of estigmastan-4-en-3-one and estigmastan-4,22-dien-3-one (89 mg, 0.04%), 6β,7β,8α,10-tetra-phydroxybenzoyl-cis-2-oxabicyclo[4.3.0]nonan-3-one (2, 79 mg, 0.037%), and 6β -hydroxy-2-oxabicyclo[4.3.0] Δ^{8-9} -nonen-1-one (4, 39 mg, 0.018%); fraction F-4 yielded ningpogenine (1.3 g, 0.62%); fraction F-5 yielded ningpogenine (286 mg, 0.14%) and 1β , 6β , 7α , 8α ,10-pentahydroxy-cis-2-oxabicyclo[4.3.0]nonane (3, 70 mg, 0.03%); fraction F-6 yielded 3 (43 mg, 0.02%) and sucrose (882 mg, 0.42%); and fraction F-7 yielded 6β , 7β , 8α , 10-tetrahydroxy-*cis*-2-oxabicyclo[4.3.0]nonan-3-one (1, 384) mg, 0.18%) and glycerol (167 mg, 0.08%).

6β,7β,8α,10-Tetrahydroxy-*cis*-2-oxabicyclo[4.3.0]nonan-3-one (1): white needles; mp 164–165 °C; $[\alpha]_D^{25}$ +0.131 (*c* 0.45, CHCl₃); IR (KBr) ν_{max} 3381, 2927, 2855, 1713, 1466, 1380, 1095 cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ 4.48 (1H, dd, J = 12.0, 8.0 Hz, H-1a), 4.33 dd (1H, dd, J = 12.0, 6.8 Hz, H-1b), 4.06 (1H, dd, J = 8.0, 3.6 Hz, H-6), 3.76 (1H, d, J = 3.6 Hz, H-7), 3.73 (1H, d, J = 11.2 Hz, H-10a), 3.63 (1H, d, J = 11.2 Hz, H-10b), 2.73 (1H, dd, J = 14.4, 5.6 Hz, H-4a), 2.58 (1H, dd, J = 14.4, 8.0 Hz, H-4b), 2.53 (1H, dddd, J = 8.0, 8.8, 8.0, 5.6 Hz, H-5), 2.47 (1H, ddd, J = 8.0, 8.8, 6.8 Hz, H-9); ¹³C NMR (CD₃OD, 100 MHz) δ 176.3 (C, C-3), 82.6 (C, C-8), 79.9 (CH, C-7a), 79.4 (CH, C-6), 68.2 (CH₂, C-1), 66.2 (CH₂, C-10), 41.2 (CH, C-9), 41.0 (CH, C-5), 33.8 (CH₂, C-4); CIMS m/z 219 [M + H]⁺ (76), 201 [M + H - H₂O]⁺ (35), 183 [M + H - 2H₂O]⁺ (100), 165 [M + H - 3H₂O]⁺ (79), 153 (53), 137 [M + H - 3H₂O - CO]⁺ (67), 123 (23); HRCIMS m/z 219.0865 [M + H]⁺ (calcd for C₉H₁₅O₆, 219.0868).

X-ray crystallographic analysis data of 1: crystal size $0.23 \times 0.09 \times 0.04$ mm; molecular formula $C_9H_{14}O_6$; crystal system monoclinic; space group *P*2(1); unit cell dimensions (*a*, *b*, *c*) 8.7505(9) Å, 5.1734-(5) Å, 10.6057(11) Å; $\alpha = 90^{\circ}$, $\beta = 98.6820(10)^{\circ}$, $\gamma = 90^{\circ}$, volume 474.62(8) Å³; *Z* = 2; density 1.527 mg m⁻³; absorption coefficient 0.129 mm⁻¹; *F*(000) = 232; diffractometer used, Bruker APEX; radiation (λ) Cu K α (0.71073 Å); 2θ range 1.94–25.00°; reflections collected, 4588; independent reflections, 1673; observed reflections, 1673 [*R*(int) = 0.0200]; final *R* indices (obsd data), *R* = 0.0284, *R*_w = 0.0746; goodness of fit, 1.080; *T* = 273(2) K. The structure was solved by direct methods and refined by full matrix least-squares on *F*^{2,11}

6β,7β,8α,10-Tetra-p-hydroxybenzoyl-cis-2-oxabicyclo[4.3.0]nonan-**3-one** (2): white, amorphous powder; $[\alpha]_D^{25}$ +56.2 (*c* 0.83, CHCl₃); UV (CHCl₃) λ_{max} (log ϵ) 251 (2.70), 272 (0.96), 385 (0.35) nm; IR (CHCl₃) ν_{max} 3390, 2925, 2854, 1714, 1606, 1464, 1089 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.95 (2H, d, J = 8.4 Hz, H-2^{'''},6^{'''}), 7.77 (2H, d, J = 8.8 Hz, H-2^{'''},6^{'''}), 7.73 (2H, d, J = 8.4 Hz, H-2^{'''},5^{''''}), 7.66 (2H, d, J = 8.4 Hz, H-3^{'''},5^{'''}), 7.61 (2H, d, J = 8.4 Hz, H-2',6'), 7.54 (2H, d, J = 8.4 Hz, H-3^{''''}, 5^{''''}), 7.53 (2H, d, J = 8.8 Hz, H-3^{''}, 5^{''}), 7.46 (2H, d, J = 8.4 Hz, H-3',5'), 6.40 (1H, d, J = 4.4 Hz, H-7), 5.50 (1H, dd, J = 7.2, 4.4 Hz, H-6), 5.36 (1H, d, J = 12.4 Hz, H-10a), 5.10 (1H, d, J = 12.4 Hz, H-10b), 4.70 (1H, dd, J = 12.4, 6.4 Hz, H-1a), 4.55 dd (1H, dd, J = 12.4, 5.6 Hz, H-1b), 3.33 (1H, ddd, J = 11.6, 6.4, 5.6 Hz, H-9), 3.16 (1H, dddd, J = 11.6, 7.2, 6.8, 7.2 Hz, H-5), 2.91 (1H, dd, J = 15.6, 6.8 Hz, H-4a), 2.79 (1H, dd, J = 15.6, 7.2 Hz, H-4b); ¹³C NMR (CDCl₃, 100 MHz) δ 65.7 (CH₂, C-1), 170.6 (C, C-3), 32.2 (CH₂, C-4), 38.2 (CH, C-5), 77.0 (CH, C-6), 75.9 (CH, C-7), 88.1 (C, C-8), 42.0 (CH, C-9), 63.5 (CH₂, C-10), 164.92 (C, C-a'), 128.0 (C, C-1'), 131.0 (CH, C-2', C-6'), 132.07 (CH, C-3', C-5'), 129.1 (C, C-4'), 164.0 (C, C-a"), 127.7 (C, C-1"), 131.22 (CH, C-2", C-6"), 132.09 (CH, C-3", C-5"), 129.4 (C, C-4"), 164.4 (C, C-a""), 127.8 (C, C-1""), 131.25 (CH, C-2"", C-6""), 132.4 (CH, C-3"", C-5""), 129.6 (C, C-4""), 164.96 (C, C-a""), 127.6 (C, C-1""), 131.5 (CH, C-2"", C-6""), 132.2 (CH, C-3"", C-5""), 129.0 (C, C-4""); CIMS m/z 458 [C23H22O10, M $- 2C_7H_4O_2$]⁺ (20), 430 [C₂₂H₂₂O₉, M $- 2C_7H_4O_2 - CO$]⁺ (100), 412 $[C_{22}H_{20}O_8, M - 2C_7H_4O_2 - CO - H_2O]^+$ (30), 293 $[C_{15}H_{17}O_6, M - CO - H_2O]^+$ $3C_7H_4O_2 - CO_2 - H$]⁺ (97), 277 (43), 201 [C₉H₁₃O₅, M- 4C₇H₄O₂ + H- H₂O]⁺ (24), 155 (29); (+)-FABMS *m*/*z* 430 [C₂₂H₂₂O₉, M - $2C_7H_4O_2 - CO]^+$ (100), 412 $[C_{22}H_{20}O_8, M - 2C_7H_4O_2 - CO - H_2O]^+$ (57), 377 $[C_{22}H_{17}O_6, M - 2C_7H_4O_2 - CO - 3H_2O]^+$ (43), 339 $[C_{16}H_{19}O_8, M - 3C_7H_4O_2 + H]^+$ (22), 293 $[C_{15}H_{17}O_6, M - 3C_7H_4O_2$ CO₂ - H]⁺ (52), 279 (33); HRFABMS *m*/*z* 458.1262 [M - $2C_7H_4O_2]^+$ (calcd for $C_{23}H_{22}O_{10}$, 458.1213).

1β,6β,7α,8α,10-Pentahydroxy-*cis*-2-oxabicyclo[4.3.0]nonane (3): white, amorphous powder; $[\alpha]_D^{25}$ +78.2 (*c* 0.11, CHCl₃); IR (CHCl₃) ν_{max} 3382, 2918, 2851, 1043 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 5.40 (1H, d, J = 5.2 Hz, H-1), 4.49 (1H, d, J = 10.4 Hz, H-10a), 4.14 (1H, dd, J = 10.0, 2.0 Hz, H-7), 3.99 (1H, dd, J = 10.0, 10.0 Hz, H-6), 3.90 (1H, ddd, J = 12.0, 12.0, 2.8 Hz, H-3a), 3.63 (1H, ddd, J = 12.0, 5.2, 2.0 Hz, H-3b), 3.51 (1H, dd, J = 10.4, 2.0 Hz, H-10b), 2.42 (1H, dd, J = 10.0, 5.2 Hz, H-9), 2.28 (1H, dddd, J = 10.0, 10.0, 6.0, 2.0 Hz, H-5), 1.84 (1H, dddd, J = 14.8, 12.0, 6.0, 1.2 Hz, H-4a), 1.71 (1H, dd, J = 14.8, 2.8 Hz, H-4b); ¹³C NMR (CDCl₃, 100 MHz) δ 100.1 (CH, C-1), 85.0 (C, C-8), 75.6 (CH, C-6), 73.6 (CH, C-7), 72.4 (CH₂, C-10), 55.8 (CH₂, C-3), 44.3 (CH, C-9), 35.2 (CH, C-5), 21.1 (CH₂, C-4); CIMS m/z 221 [M + H]⁺ (43), 203 [M + H - H₂O]⁺ (100), 185 [M + H - 2H₂O]⁺ (134), 167 [M + H - 3H₂O]⁺ (56), 155 (26), 149 [M + H - 4H₂O]⁺ (19), 121 (17), 113 (33), 84 (21); HRCIMS m/z 221.0616 [M + H]⁺ (calcd for C₉H₁₆O₆, 221.1225).

6β-**Hydroxy-2-oxabicyclo**[**4.3.0**]Δ^{8–9}-**nonen-1-one** (**4**): yellow oil; [α]_D²⁵ +0.68 (*c* 0.06, CHCl₃); UV (CHCl₃) λ_{max} (log ϵ) 246 (1.84) nm; IR (CHCl₃) ν_{max} 3365, 1727, 1652, 1603, 1043 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 4.43 (1H, ddd, J = 11.2, 4.8, 2.8 Hz, H-3a), 4.27 (1H, ddd, J = 11.2, 12.0, 2.8 Hz, H-3b), 4.20 (1H, dt, J = 7.6, 8.8 Hz, H-6), 2.87 (1H, m, H-5), 2.65 (1H, ddd, J = 16.8, 8.0, 1.2 Hz, H-7a), 2.54 (1H, ddc, J = 16.8, 8.8, 1.6 Hz, H-7b), 2.20 (3H, s, H-10), 2.20 (1H, m, H-4b), 1.67 (1H, dddd, J = 13.6, 12.0, 12.0, 4.8 Hz, H-4a); ¹³C NMR (CDCl₃, 100 MHz) δ 164.1 (C, C-1), 69.4 (CH₂, C-3), 28.3 (CH₂, C-4), 50.1 (CH, C-5), 78.6 (CH, C-6), 46.9 (CH₂, C-7), 157.0 (C, C-8), 122.6 (C, C-9), 17.0 (CH₃, C-10); EIMS *m*/z 168 [M]⁺ (75), 154 [M + CH₂]⁺ (58), 149 [M + H₂O - H]⁺ (40), 137 (35), 125 (24), 111 (38), 97 (53), 84 (100), 71 (57), 57 (57), 55 (44), 43 (38); HREIMS *m*/z 168.0739 [M]⁺ (calcd for C₉H₁₂O₃, 168.0786).

Acknowledgment. We thank Biol. E. Salazar Leyva for technical assistance. This work was financially supported by CONACyT (Project No. 40405).

Supporting Information Available: Crystallographic data in cif format. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- Argueta, A.; Cano, L.; Rodarte, M. Atlas de las plantas de la medicina tradicional mexicana; Instituto Nacional Indigenista: Mexico, 1994.
- (2) Autore, G.; Rastrelli, L.; Lauro, M. R.; Marzocco, S.; Sorrentino, R.; Sorrentino, U.; Pinto, A.; Aquino, R. Life Sci. 2001, 70, 523– 534.
- (3) Nielsen, B. E.; Kofod, H. *Acta Chem. Scand.* 1963, *17*, 1167–1168.
 (4) Onocha, P. A.; Okorie, D. A.; Connolly, J. D.; Roycroft, D. S.
- Phytochemistry 1995, 40, 1183–1189.
- (5) Gavagnin, M.; Ungur, N.; Mollo, E.; Templado, J.; Cimino, G. Eur. J. Org. Chem. 2002, 9, 1500–1504.
- (6) Qian, J.; Hunkler, D.; Rimpler, H. Phytochemistry 1992, 31, 905– 911.
- (7) Plouvier, V.; Favre-Bonvin, J. *Phytochemistry* **1971**, *10*, 1697–1722.
- (8) Kanchanapoom, T.; Noiarsa, P.; Otsuka, H.; Ruchirawat, S. Phytochemistry 2006, 67, 516–520.
- (9) Hegnauer, R.; Kooiman, P. Planta Med. 1978, 33, 1-33.
- (10) Kaneko, T.; Ohtani, K.; Kasai, R.; Yamasaki, K.; Duc, M. N. *Phytochemistry* **1997**, *46*, 907–910.
- (11) CCDC 629925 contains the supplementary crystallographic data for compound 1. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

NP060499W